Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Acta Physiologica Sinica ; (6): 33-38, 2013.
Article in English | WPRIM | ID: wpr-333138

ABSTRACT

Methylation, a methyl group-consuming reaction, plays a key role in the degradation (i.e., inactivation) of monoamine neurotransmitters, including catecholamines, serotonin and histamine. Without labile methyl groups, the methylation-mediated degradation cannot take place. Although high niacin (nicotinic acid and nicotinamide) intake, which is very common nowadays, is known to deplete the body's methyl-group pool, its effect on monoamine-neurotransmitter degradation is not well understood. The aim of this article was to investigate the effect of excess nicotinamide on the levels of plasma serotonin and histamine in healthy subjects. Urine and venous blood samples were collected from nine healthy male volunteers before and after oral loading with 100 mg nicotinamide. Plasma N(1)-methylnicotinamide, urinary N(1)-methyl-2-pyridone-5-carboxamide (2-Py), and plasma betaine levels were measured by using high-performance liquid chromatography (HPLC). Plasma concentrations of choline, serotonin and histamine were measured using commercial kits. The results showed that the plasma N(1)-methylnicotinamide level and the urinary excretion of 2-Py significantly increased after oral loading with 100 mg nicotinamide, which was accompanied with a decrease in the methyl-group donor betaine. Compared with those before nicotinamide load, five-hour postload plasma serotonin and histamine levels significantly increased. These results suggest that excess nicotinamide can disturb monoamine-neurotransmitter metabolism. These findings may be of significance in understanding the etiology of monoamine-related mental diseases, such as schizophrenia and autism (a neurodevelopmental disorder).


Subject(s)
Humans , Male , Betaine , Blood , Choline , Blood , Chromatography, High Pressure Liquid , Histamine , Blood , Niacinamide , Blood , Pyridones , Urine , Serotonin , Blood
2.
Acta Physiologica Sinica ; (6): 86-92, 2010.
Article in Chinese | WPRIM | ID: wpr-337774

ABSTRACT

Type 2 diabetes is a major global health problem. It is generally accepted that type 2 diabetes is the result of gene-environmental interaction. However, the mechanism underlying the interaction is unclear. Diet change is known to play an important role in type 2 diabetes. The fact that the global high prevalence of type 2 diabetes has occurred following the spread of food fortification worldwide suggests a possible involvement of excess niacin intake. Our recent study found that nicotinamide overload and low nicotinamide detoxification may induce oxidative stress associated with insulin resistance. Based on the relevant facts, this review briefly summarized the relationship between the prevalence of type 2 diabetes and the nicotinamide metabolism changes induced by excess niacin intake, aldehyde oxidase inhibitors, liver diseases and functional defects of skin. We speculate that the gene-environmental interaction in type 2 diabetes may be a reflection of the outcome of the association of chronic nicotinamide overload-induced toxicity and the relatively low detoxification/excretion capacity of the body. Reducing the content of niacin in foods may be a promising strategy for the control of type 2 diabetes.


Subject(s)
Humans , Diabetes Mellitus, Type 2 , Epidemiology , Diet , Food, Fortified , Niacin , Niacinamide
SELECTION OF CITATIONS
SEARCH DETAIL